Answer:
Jโ(โ3, 5) โ Jโโฒ(โ7, 12) โ Jโโณ(โ7, โ12);
Kโ(โ1, 0) โ Kโโฒ(โ5, 7)โ Kโโณ(โ5, โ7);
Lโ(8, โ4)โ Lโโฒ(4, 3)โ Lโโณ(4, โ3)
Step-by-step explantion
Use the translation vector <โ4, 7> ย to determine the rule for translation of the coordinates: (x,y)โ(x+(โ4),y+7).
Apply the rule to translate vertices J(โ3,5), K(โ1,0) and L(8,โ4).
J(โ3,5)โ(โ3+(โ4),5+7)โJ'(โ7,12).
K(โ1,0)โ(โ1+(โ4),0+7)โK'(โ5,7).
L(8,โ4)โ(8+(โ4),โ4+7)โL'(4,3).
To apply the reflection across x-axis use the rule for reflection: (x,y)โ(x,โy).
Apply the reflection rule to the vertices of โณJ'K'L'.
J'(โ7, 12)โJ''(โ7,โ12).
K'(โ5,7)โK''(โ5,โ7).
L'(4,3)โL''(4,โ3).
Therefore,
J(โ3,5)โJ'(โ7,12)โJ''(โ7,โ12)K(โ1,0)โK'(โ5,7)โK''(โ5,โ7)
L(8,โ4)โL'(4, 3)โL''(4,โ3)
represents the translation of โณJKL along vector <โ4, 7> ย and its reflection across the x-axis.