Respuesta :
Answer:
The value is  [tex]V_2 = 1.9396 *10^{-5} \  m^3 [/tex]
Explanation:
From the question we are told that
  The depth at which the bubble is released is  [tex]h = 115 \ m[/tex]
  The volume of the air bubble is  [tex]V = 1.60 cm^3 = 1.60 *10^{-6} \ m^3[/tex]
Generally from the ideal gas law
   [tex]PV = nRT[/tex]
Given that  n , R , T are constant we have that
  [tex]PV = constant[/tex]
So  Â
  [tex]P_1 V_1=P_2 V_2[/tex]
Here [tex]P_1[/tex] is the pressure of the bubble at the depth where it is released which i mathematically represented as
   [tex]P_1 = P_a + P[/tex]
Here [tex]P_a[/tex]  is the atmospheric pressure with value  [tex]P_a = 101325 \ Pa[/tex]
and  [tex]P[/tex] is the pressure due to the depth which is mathematically represented as
    [tex]P = \rho * g * h[/tex]
So
    [tex]P = 1000 * 9.8*115[/tex]
=> Â Â [tex]P = 1127000\ Pa[/tex]
Here  [tex]\rho[/tex] is the density of pure water with value  [tex]\rho = 1000 \ kg/m^3[/tex]
    [tex]g = 9.8 \ m/s^2[/tex]
    [tex]V_1[/tex] is the volume of the bubble at the depth where it is released
    [tex]P_2[/tex] is the pressure of the bubble at the surface which is equivalent to the atmospheric temperature
    [tex]V_2[/tex] is the volume of the bubble at the surface
So
   [tex]V_2 = \frac{ P_1 * V_1}{ P_2}[/tex]
=> Â Â [tex]V_2 = \frac{(Pa+ P) * V_1}{P_a}[/tex]
=> Â Â [tex]V_2 = \frac{101325 + 1127000 Â * (1.60 *10^{-6})}{ 101325 }[/tex]
=> Â Â [tex]V_2 = 1.9396 *10^{-5} \ Â m^3 [/tex]